Toward a better understanding of plant genomes structure

Hélène BERGES Director of the Plant Genomic Center

The French Plant Genomic Center

Created in 2004 by INRA (French National Institute for Agricultural Research) • Depository of genomic libraries for the scientific community

⇒ BAC libraries

A dedicated structure to assist plant genomic programs

- ⇒ Distribute the genomic resources at the international level
- Provide high quality research material and efficient tools and services for

studying plant genomes

- ⇒ Develop innovative solutions
- Develop genomic projects in collaboration
- Host scientists in the frame of collaborations

Genomic Libraries available at CNRGV

Wheat

Rye

Barley

Rice

Oat

Sugarcane

Spartina

Maize

Oil oalm

Arabidopsis

Capsella

Radish

Melon

Medicago

Passiflora

Casuarina

Strawberry

Grapevine

Chicory

Oak

Pea

Lotus

Rapeseed

Yam

Home > Library

Acyrthosiphon pisum

See all CNRGV libraries

- - > more than 430 different Genomic Libraries
- > 20 M unique clones

Services at CNRGV

Interactions with laboratories around the world

> 3 233 242 Clones distributed during the last 5 years (2011-2015)

The challenges - The expectations

- Target specific Genomic regions

- Focus / Target / Markers

- Manage diversity

Genome sequencing strategies

The BAC library strategy

- Specific Markers of genomic regions

TATTTACCATATCAGATTCAGATTCAGTCCTCAGCAAAATGAAGGGCTCCATTTTCACTCTGTTTTTATT CTCTGTCCTATTTGCCATCTCAGAAGTGCGGAGCAAGGAGTCTGTGAGACTCTGTGGGCTAGAATACATA CGGACAGTCATCTATATCTGTGCTAGCTCCAGGTGGAGAAGGCATCAGGAGGGGATCCCTCAAGCTCAGC AAGCTGAGACAGGAAACTCCTTCCAGCTCCCACATAAACGTGAGTTTTCTGAGGAAAATCCAGCGCAAAA

TAAACGTGAGTTTCTGAGGGGAAAATCCAGCGCAAAA CTTTGGGGTGGACAGATGCCCACTGAAGAGCTTTGG ATTTACAAACTTTGTGTTGCCCTGATGGCTGTTCCA CAAATACCCAATGGGTGGCAGAGCTTTATCACATGT AATATTGTGTTATTAAAATGATGGCTTTTGGGTAGG TTGAAACCACAGTGATCTCTATTTTCTCCCTTTGCC ATGCTTTGAAATTTCAAATGCTGCGCAAAATTGCAA

- BAC-Pool Sequencing (PacBio)
- 35 to 100 x coverage
- PacBio Technology 1BAC : 1 contig
- MTP of BACs : 1 contig

Screening Identification of BAC clones

Essential and efficient tools for understanding the organization and function of specific genomic regions

BAC library from various genotypes

Targeting a genomic region of interest

Partners:

INTA Argentina, Maria Fernanda Pergolesi and Maria Jose Dieguez

Objectives:

Gamma 6 Sinvalocho (Sensitive) (Résistant)

Physical map of the locus confering resistance to *Puccinia triticina in the* resistant wheat cultivar Sinvalocho (The pathogen Puccinia is a rust fungus)

Data : LrSV2 gene for adult plant wheat leaf rust resistance was mapped on chromosome 3BS

1. Construction of the NG-BAC library from Sinvalocho

440 samples representing 637 440 clones (3.39 X) Instead of 1650 plates

- ► LrSV2 target interval : 262 Kb in CS
- CS sequence available
- PCR markers genome specific available
- 2. Screening with 5 markers
- 3. Sequencing of positive BACs clones

Map based cloning of LrSV2 in wheat

3 positive BAC clones identified spanning the *LrSV2* interval -> characterization, validation

- -> BAC sequencing using 454 Technology Definition of news markers
- -> reduction of the interval to 71kb
- -> Size of Sinvalocho locus smaller than in CS

Identification of candidate genes (annotation)

Functional validation (transformation of a susceptible variety to confirm the involvement of the gene in the resistance) in progress

Time for the project : 3 months

Comparison of short and long reads Sequencing

Clone name	Estimated insert size (kb)	Roche-454 contigs ^a	PacBio RS II contigs	Roche-454 size (bp)	PacBio RS II size (bp)	Roche- 454/PacBio RS II size ratio
Frag-55019	90	2	1	90248	90557	0.99659
Heli-337E08	170	6	1	173471	175563	0.98808
Hord-155N13	155	10	1	155553	155889	0.99784
Sacc-241H10	150	17	1	142570	152547	0.93460
Sacc-276O20	100	1	1	105854	105851	1.00003
Trit-136P19	120	2	1	124789	125714	0.99264
Trit-131J6	130	17	1	125436	133334	0.94077
Zeam-34K24	135	10	1	128036	133221	0,96108
Zeam-100L1	85	1	1	86647	86651	0.99995

PacBio RS II reads assembly performed following HGAP workflow.

Newbler assembly for Roche-454 reads (filtering low quality, E.Coli, and vectors reads).

Assembly of PacBio RS II sequences of pool of untagged BAC clones led to one contig per BAC assigned with BAC-end sequences

Interest of the long reads for complex genomic region

Alignment of Roche-454 and PacBio RS II contigs of Zeam-34K24 BAC

- Two contigs (454) displaying strong homologies with two distinct regions (PacBio)
- Roche-454 reads coverage exhibited two spikes / PacBio RS II reads coverage is stable corresponding to missambled data

Interest of the long reads for complex genomic region

 Collapsing region corresponding to strong similar repeated element (LTR – copia superfamily)

The Next-generation DNA sequencing technologies

Complex plant genomes sequencing projects became possible (many billions of bases per day for hundreds or thousands of dollars per gigabase instead of millions or billions of dollars per gigabase)

but de novo assembling of plant genomes remains challenging

- Size of the reads
- Gene families are difficult to assemble and may collapse into a mosaic
- Repeat elements
- How to assemble these genomes accurately?
- -> Despite the progress made with the NGS technologies we still don't have enough reference plant genomes with high confident data (false conclusions ?)
- -> Third-generation sequencing technologies ?

High-Throughput, High-Resolution Imaging Gives Contiguous Reads up to Mb Length

50Gb data generated per flowcell (=> 100Gb per chip)

The BioNano Technology

DNA molecules in the nanochanels

BioNano system

Workflow

Start with non-amplified native genomic DNA

Label seq. specific sites (e.g. nickase motifs)

Linearize & Image

Convert images to digitized molecules:

- Convert label locations to distances between labels
- Create molecular barcodes (100kb to >1 Mb)

Assemble the molecular barcodes into consensus maps/contigs:

Map lengths can be as long as 30 Mb

Applications

For Genome Finishing, the maps serve as a scaffold:

- Sequencing contigs are converted in silico into molecular barcodes by highlighting the same sequence motifs
- These sequencing based barcodes are then aligned to the BioNano maps

For SV discovery/detection, compare to a reference or gold standard, looking for changes in the patterns:

 Shifts in barcode patterns reveal insertion (addition), deletion (subtraction), inversion (re-orientation, translocation of genome segments

Sunflower Genome Finishing

- Species: *Helianthus annuus*
- 3,6 Gb
- 2n=34 chromosomes
- Genome sequence + 100X PacBio

# contigs	LEN Max	N50 BP	#>N50	MEDIAN	ВР
12 318	3,35 Mb	524 kb	1 684	120 kb	2,93

=> 80% of the genome inside contigs

Langlade et al., PAG Jan 2016

Optical map of the sunflower genome

Hybrid scaffolding of the sunflower genome

Delledonne et al., 2016

Sunflower Genome enhancement

	PacBio Map	BioNano Map	Hybrid scaffold
Count	12318	2959	1844
Median length (Mb)	0,120	0,621	1,49
N50 length (Mb)	0,524	1,444	2,227
Max length (Mb)	3,35	4,72	10,09
Total length (Mb)	2930	3202	3303
% genome	81%	89%	91%

4,25 fold increase

Detection of structural variations

Conclusion

 Single molecule long reads technology resolves gaps and collapsing issues of shorter reads sequences assembly Missing regions /Collapsing of duplicated regions

- Interest of long reads technology in the assembly of genome sequences and consequently in the accuracy of the data generated (*especially with complex genome such as plant genomes with TEs*)

- Combination of BACs and long read technology to solve some issues due to duplicated genes, high level of repetitive elements or polyploidie

- Physical maps to investigate structural variations

Aknowledgements

Arnaud BELLEC Sonia VAUTRIN Genséric BEYDON Nathalie RODDE William MARANDE Joëlle FOURMENT Elisa PRAT Nadine GAUTIER Nadège ARNAL Audrey COURTIAL Céline CHANTRY-DARMO Céline JEZIORSKI Stéphane CAUET **David PUJOL** Laetitia HOARAU Hélène BERGES

Clémentine Vitte

Wolfgang Spielemeyer

Nicolas Langlade Stéphane Munos Jérôme Gouzy

PLANT GENOMIC CENTER

@CNRGV

Kellye Eversole

NTERNATIONAL BARLEY

ONSORTIUM

Nils Stein

Anete Pereira de Souza / **Danilo Augusto**

